当前位置:首页 > 教学范文 > 说课稿

运算律说课稿

时间:2024-08-12 12:10:20
运算律说课稿

运算律说课稿

作为一名优秀的教育工作者,就不得不需要编写说课稿,编写说课稿是提高业务素质的有效途径。那么大家知道正规的说课稿是怎么写的吗?下面是小编收集整理的运算律说课稿,仅供参考,希望能够帮助到大家。

运算律说课稿1

1、教学内容:

我说课的内容是北师大版小学数学四年级上册56-58页的《运算律》。这部分内容是本单元的第一教时,教学加法的两条运算律——加法交换律和加法结合律。加法交换律和加法结合律是运算中进行简便计算的两种必要的理论依据,他们是学生正确、合理、灵活地进行计算的思维素质,掌握的好坏将直接影响学生今后的简便计算和计算速度。这部分内容是在学生已经学过的加法计算和验算的基础上进一步探究,从感性上升到理性的内容。

2、教学目标:

根据学生的生活经验和知识背景及本课的知识特点,我预设了如下的教学目标:

(1)知识技能目标:利用学生身边的事件,组成贴近学生生活的教学内容,使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。使学生在学习用符号、字母表示自己发现的运算律的过程中,初步发展符号感,初步培养归纳、推理的能力,逐步提高抽象思维能力。

(2)过程方法目标:通过学生的自主观察、比较、分析、归纳,合作交流等学习活动,使学生经历探索加法交换律和结合律的过程,并经过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算律。

(3)情感、态度、价值观目标:使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。

3、教学重点:

让学生在探索中经历运算律的发现过程,理解不同算式间的相等关系,发现规律,概括运算律。

4、教学难点:

概括运算律。

5、教学准备:多媒体。

二、学情分析

学生从小学低年级开始就接触过加法的验算(交換两个加数的位置和不变)口算(数的分与合)等方面的知识,实际上对加法的交换律和加法结合律在潜意识里已有较多的感性认识,为新知的学习奠定了良好的基础。而且在实际计算的时候,很多学生是能够应用一些巧方法,使计算变得简单而且快。所以我没有从“零起点”展开教学。

三、教学过程

(一)激趣导入

在课的一开始,我设置一个小竞赛,有意识让孩子巧算,充分调动学生的积极性。

(二)创设情境提出问题

出示例题,让学生提出用加法计算的问题。学生会提出如下的问题:

①参加跳绳的一共有多少人?

②参加活动的女生一共有多少人?

③跳绳的男生和踢毽子的女生一共有多少人?

④参加活动的一共有多少人?

今天这节课,我们就一起来研究其中的这两个问题:参加跳绳的有多少人? 参加活动的一共有多少人?

数学源于生活,生活中处处有数学,用学生身边事情引入新知,,让学生自由地提问,可以培养学生的发散性思维。同时学生提出的问题,作为后继探究的学习材料,符合新课程“创造性使用教材”的理念。

(三)研究加法交换律

1、解决问题,初步感知。

根据“参加跳绳的有多少人?”先让学生列式,引导得出:两个算式的结果相同,可以用等号连接起来。板书:28+17=17+28。

2、观察特例,引发猜想。

接着,让学生观察这个等式,你有什么发现?(同桌交流并汇报)

学生一般会回答:①两个加数交换了位置,但结果是相等的。

②28和17交换位置,但结果不变。

比较他们两的结论,你有什么要说的?

学生可能会说:

通过学生的争辩,引出仅凭一个特例就得出“交换两个加数的位置,和不变”太草率了,不妨把这个结论当做我们的猜想。(板书:猜想)

3、举例验证,自主探索

怎么验证?

生:再举一些这样的例子。

师:举多少个?(无数个)可能举无数个吗?(不可能)

每个同学举3个例子,然后同桌交换相互检查,看看他的算式两边的结果是否相等。

在这里,我充分让学生自主活动,规律发现的过程。一方面组织学生写出类似的等式,帮助了学生积累感性材料,另一方面丰富了学生的表象,进一步感知了加法交换律。

4、观察等式,总结规律。

5、引导学生探索加法交换律的表达方式。

教师提出:能不能用一个等式来表示我们发现的规律?同桌讨论。汇报:

预设1:我们用数字(文字)

2:我们用符号表示

3:我们用字母表示

②比较表示的不同方式,提出用字母表示发现的规律比较简洁。

出示板书:a+b=b+a

指出:这样的规律就是加法交换律。(板书)

学生可能有三种表示法:①用文字(数字)表示;

②用符号表示;

③用字母表示。

数学上一般用字母来表示这些规律,板书:a+b=b+a。

帮助学生构建了简单的数学模型,使学生体会到符号的简洁性,从而发展了学生的符号感。

(四)加法结合律

整个探索过程与“交换律”相似,唯一不同的是由于学生已有了探索前面例子的经验,在这里教师可以完全放手,稍加点拨便于引导学生完成探索过程。

1、再次出现主题图,研究:参加活动的一共有多少人?

学生列式,得出(28+17)+23=28+(17+23)

2、算一算,下面的○里能填上等号吗?

(45+25)+13○45+(25+13)

(36+18)+22○36+(18+22)

3、充分放手,让学生探索规律。

(1)再举两个例子验证下。

(2)你发现了什么规律,用简单的语言概括起来(同桌互相交流)。

(3)用字母表示规律。

在这个环节里,抓住加法交换律和加法结合律的内在联系,利用学生已有知识经验,把加法交换律的学习,迁移类推到加法结合律的学习中来。学生在教师的点拨和引导下,逐步从观察——感知——理解,充分符合学生的认知规律。通过学生讨论、交流、汇报等环节,还给学生一个自主的空间。由于“运算律”属于理性的总结和概括,比较抽象,学生并不容易理解和掌握,因此多引导学生独立发现,思考、解答,有利于学生概括出相应的运算律。

(五)实践应用

我准备安排基础训练和拓展训练两个练习层次,通过层层深入,帮助学生进一步掌握本课知识,形成技能,并激发他们的创新思维,让学生感受解决问题的乐趣。

基础训练就是书上第58页的想想做做1、2 ……此处隐藏9347个字……分配律的逆应用虽然在例题中没有出现,但现在这个知识结构中是很重要的一部分,乘法分配律在减法中的应用也是非常重要的,所以在教学中应该重视,使乘法分配律的内涵得到延伸,让学生对乘法分配律有了更一步的理解】

【设计意图:练习设计层次清楚,重点突出,形式活泼,有效地促进学生知识的内化。这些教学活动使学生经历了知识的形成过程,有利于学生改善学习方式。】

(四)回顾再现,升华新知

今天我们学习了什么知识,我们是怎么来学习的?

【设计意图:在本节课即将结束之时,让学生畅谈学习收获,不但培养了学生的大胆表达自己的情感,而且将所学知识得到及时有效的梳理和巩固。】

四、提纲挈领——说板书

运算律---乘法分配律

(65 + 45)× 5 = 65 ×5+45× 5

(32 + 45)× 5=32 × 5 + 45 × 5

(a + b)× c = a × c + b × c

【设计意图:良好的板书就是一个微型的教案,是课堂教学的缩影。本课的板书,简洁明了,展示学生知识形成的过程,抓住教学脉络,有利于学生知识的自我建构。】

运算律说课稿7

运算律与简便算法这一小节是对学过的有关知识进行整理和复习。加法的交换律、结合律,乘法的交换律、结合律和分配律以及减法、除法的运算性质是小学数学中简便计算的根据,也是学生今后进一步学习的基础。因此,我制定了以下三个方面的教学目标。

1.知识与技能:通过整理和复习,学生形成一定的知识网络,构建完整的知识结构,系统掌握运算定律,能根据数据的特点选择合理的运算定律与简算方法进行计算。

2.过程与方法:通过整理、交流、联系、对比等数学活动,培养学生良好的观察能力和辨析能力,从而提高学生计算技巧,进一步发展数感。

3.情感与态度:激发学生对学习简算技能、形成简算意识的积极的情感体验,有意培养学生的简算意识,并最终养成简算习惯。

学情分析:大部分孩子对于如何有效的利用所学知识进行简算这一能力还有所欠缺,尤其表现在对应用“凑整”思想的意识淡薄以及不能灵活、合理地运用运算定律和运算性质解决问题这两个方面上。有些式题同时包含了几种简便方法,让学生防不胜防,教师“唠”而无功。

根据教材内容、教学目标及学生特点,在学生已有知识经验的基础上,以学生自主探究整理为主线,辅以讨论、交流等方法组织教学,使学生能在一个开放的氛围中完成学习任务。

教学设计如下

1.激趣导入,复习旧知

计算复习课应该说是比较枯燥乏味的,创设“高斯求和”的故事情境,激发学生学习的兴趣同时渗透从运算定律和简便计算的作用,让学生感受到简算在生活中的价值。

2.自主整理 完善认知结构

数学的复习过程,其实就是学生的认知结构不断重组,并形成良好的认知结构的过程。在此过程中,学生的自主整理和构建知识网络的能力就显得特别重要。我设计了预习单,引导学生把分散在各年级、各章节中常见的运算律、运算性质和简算方法上下串联、左右沟通起来,用自己喜欢的方式整理,通过课前的自主整理,学生对运算律和运算性质更有了充分、完整的认识。教学时放手让学生交流整理的知识,互助评价,教师则及时点评、激励、提升。这样有利于主体性的发挥,把学习的主动权交给学生,让学生主动参与,体验成功,同时也可以培养他们的概括能力。把整理知识置于课前,在时间、资源的利用上给予学生更广阔的空间,这样学生到课堂上交流的时候,才有话说,才能提高课堂效率。

3.练习实践,应用简便

由于本课的教学点众多,哪些是基础的、必须的,哪些是领悟的、理解的,哪些是忽略的、弱化的,需要用整体建构的思想来实现。为此,在练习与实践中我安排了基础练习与重点突破两大板块,旨在让“形”(运算律和简算方法的结构化外形)与“式”(具体的简便计算题)完美对接,学生深层次解读式题的能力得到提升,既循序渐进,立足基础,又层层推进。

基础练习环节,首先设计了“快速判断,下面各题中哪些题可以运用定律和性质进行简算。”让学生仔细阅读每一道题,交流。通过这样的环节,可以使学生知道在计算中一定要养成“看清数字和运算符号,想想能否用简算”的审题习惯。同时,能进行简算的题往往在数和运算符号上都具有一定的特点,这样的练习也是为了训练学生的数感。然后集中呈现不同类型的简便计算,重在立体拓展简便的涵义,逐步完善学生对简算的认识。通过让学生直接运用运算律和简算方法进行计算,使学生对简便计算的意义、结构类型的理解更加完整、透彻。

重点突破环节主要是一些变式的习题或不能直接用简便方法而需要通过转化的式题。这些题,学生只有边审题,边运用整体思维观察算式,寻找特点,才能算得又快又对又合理,从而形成娴熟的运算技能。其间突出简便计算“分”的思想和“变”的思想25×4.4 21× 5.17×1.53-51.7×0.053

学生错例的讲解原本是设计好学生易错易混淆的题,让学生查找根源,寻求对策,受贲友林老师平面图形复习的启发,把课堂的舞台让给学生,学生收集学生评讲,把自主学习落到实处,这也与我们学校推行的先学后教理念相吻合,所以我把这一环节改为学生课前自己收集错例、分析错误原因,充分利用学生资源,让学生评析,培养学生总结概括的能力,及辨析的能力,让学生在反思中提升计算能力。由于学生个性差异的不同,思考问题的方法也就不同。每个学生有每个学生的精彩,我们看到大多数同学呈现的都是属于负迁移的题目,也是容易混淆的题目,通常为了凑整改变运算顺序,学生分析的也很透彻,尤其是张沈阳既有错例分析改正对比小拓展,学生的能力是不可估量,你给学生一片自主的天地,学生就会演绎出更多的精彩,收获成功的快乐。

解决实际问题、运算规律的拓展和自我挑战的介入,不仅是使课堂生出许多数学味来,而且顺应了学生追求创造与突破的学习愿望。

纵观全课设计,我以学生自主探究、合作交流贯穿始终,精心设计各个教学环节,让学生主动积极地学习,体会到整理知识的好处,感受到简算的优越性,使本节课既达到了整理复习的目的,又提高了学生合理、灵活地运用简便算法的能力。

今天的教学,我觉得还是存在着一些问题,看似简单的运算律和简便计算包含着极为丰富的内容,因为时间关系不得不取舍。简便计算通常学生对于单纯的简算比较在意而解决实际问题中出现的简便计算常常忽视,缺乏那种简算意识比如圆环面积计算、相遇问题等,因为时间关系,在实际中的应用少了些,犹如蜻蜓点水。另外对于多加要减、多减要加这样的题型其实掌握的也不好,容易混淆课上没有涉及到。混合运算,可以按顺序进行计算,也能依据运算律使计算简便,如何体现怎样简便就怎样算,本课淡化了这一目标,比如 ,我是放在快速判断中的,这需要学生有较好的数感和口算能力,只顺应了少数优秀的学生,大部分学生没有感觉,如果以对比的形式出示乘法分配律计算和按运算顺序计算两种不同的算法,让学生知道有的时候不需要运用运算律,反而会更简便。这样处理学生感悟要深刻些。

《运算律说课稿.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式