当前位置:首页 > 教学范文 > 教学设计

初中数学教学设计

时间:2024-08-12 12:08:49
初中数学教学设计大全

初中数学教学设计大全

作为一名教职工,有必要进行细致的教学设计准备工作,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。那么应当如何写教学设计呢?下面是小编精心整理的初中数学教学设计大全,希望能够帮助到大家。

初中数学教学设计大全1

一、背景

新课标要求,应让学生在实际背景中理解基本的数量关系和变化规律,注重使学生经历从实际问题中建立数学模型、估计、求解、验证解的正确性与合理性的过程。在实际工作中让学生学会从具体问题情景中抽象出数学问题,使用各种数学语言表达问题、建立数学关系式、获得合理的解答、理解并掌握相应的数学知识与技能,这些多数教师都注意到了,但要做好,还有一定难度。

二、教学片段

在刚过去的这个学期,我上了一节“一元一次不等式组的应用”。

出示例题:小宝和爸爸、妈妈三人在操场上玩跷跷板,爸爸体重为72千克,坐在跷跷板的一端,体重只有妈妈一半的小宝和妈妈一同坐在另一端。这时,爸爸的一端仍然着地,后来小宝借来一副质量为6千克的哑铃,加在他和妈妈坐的一端,结果,爸爸被高高地跷起。猜猜看,小宝的体重约多少千克?

我问学生:“你们玩过跷跷板吗?先看看题,一会请同学复述一下。”学生复述后,基本已经熟悉了题目。我接着让学生思考:他们三人坐了几次跷跷板?第一次坐时情况怎样?第二次呢?学生议论了一会儿,自主发言,很快发现本题中存在的两种文字形式的不等关系:

爸爸体重>小宝体重+妈妈体重

爸爸体重<小宝体重+妈妈体重+一副哑铃重量

我引导:你还能怎么判断小宝体重?学生安静了几分钟后,开始议论。一学生举手了:“可以列不等式组。”我给出提示:“小宝的体重应该同时满足上述的两个条件。怎么把这个意思表达成数学式子呢?”这时学生们七嘴八舌地讨论起来,都抢着回答,

我注意到一位平时不爱说话的学生紧锁眉头,便让他发言:“可以设小宝的体重为x千克,能列出两个不等式。可是接下来我就不知道了。”我听了心中一动,意识到这应是思想渗透的好机会,便解释说:“我们在初中会遇到许多问题都可以用类似的方法来研究解决,比方说前面列方程组”不等我说完,学生都齐声答:“列不等式组。”全班12小组积极投入到解题活动中了。5分钟后,我请学生板演,自己下去巡查、指导,发现学生的解题思路都很清楚,只是部分学生对答案的表达不够准确。于是提议学生说说列不等式组解应用题分几步,应注意什么。此时学生也基本上形成了对不等式方法的完整认识。我便出示拓展应用课件:

一次考试共25道选择题,做对一道得4分,做错一道减2分,不做得0分。若小明想确保考试成绩在60分以上,那么他至少要做对多少题?

设置这道题,既有调查本节课效果的意图,也想巩固拓展一下学生的思维。没料到相当多学生对“至少”一词理解不准确,导致失误。这正好让我们的“本课小结”填补了一个空白——弄清题目中描述数量关系的关键词才是解题的关键。

三、反思

本节课讲完后,我感到一丝欣慰,看到孩子们跃跃欲试的学习劲头,突然领悟到:教师的教学行为至关重要,成功的教学,能开启学生心灵的窗户,能帮学生树立学习的自信心。

本节课我有几个深刻的感受:

1、在课前准备的时候,我就觉得不等式组的应用是个难点。所以在课堂教学中设置了几个台阶,这也正好符合了循序渐进的教学原则。

2、例题贴近学生实际,我在教学中有采用了更亲近的教学语言,有利于激发学生的探究欲望。

3、关注学生的学习状态,随时采取灵活适宜的教学方法,师生互动,生生互动,课堂教学才更加有效。

4、学生在学习后,确实感受到“不等式的方法”就像方程的方法一样是从字母表示数开始研究解决的。这种方法可以帮助我们用数学的方式解决实际问题。

初中数学教学设计大全2

一、内容简介

本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。

关键信息:

1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。

2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。

二、学习者分析:

1、在学习本课之前应具备的基本知识和技能:

①同类项的定义。

②合并同类项法则

③多项式乘以多项式法则。

2、学习者对即将学习的内容已经具备的水平: 在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。

三、教学/学习目标及其对应的课程标准:

(一)教学目标:

1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。

2、会推导完全平方公式,并能运用公式进行简单的计算。

(二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理数、实数、代数式、方程、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、方程、不等式、函数等进行描述。

(三)解决问题:能结合具体情景发现并提出数学问题;尝试从不同角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。

(四)情感与态度:敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解,能从交流中获益。

四、教育理念和教学方式:

1.教师是学生学习的组织者、促进者、合作者,学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。教学是师生交往、积极互动、共同发展的过程。当学生迷路的时候,教师不轻易告诉方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。

2.采用“问题情景—探究交流—得出结论—强化训练”的模式展开教学。

3.教学评价方式:

(1)通过课堂观察,关注学生在观察、总结、训练等活动中的主动参与程度与合作交流意识,及时给与鼓励、强化、指导和矫正。

(2)通过判断 ……此处隐藏19027个字……组解决实际问题的关键,是后续学习一元二次方程、函数的重要基础,具有承前启后的重要作用。另外,在整个学习过程中数轴起着不可替代的作用,处处渗透着数形结合的思想,这种数形结合的思想对学生今后学习数学有着重要的影响。

3重点难点

1、教学重点:对一元一次不等式组解集的认识及其解法。

2、教学难点:对一元一次不等式组解集的认识及确定。

3、教学关键:利用数轴确定不等式组中各个不等式解集的公共部分。

4教学过程4.1第一学时教学活动活动1【导入】温故知新

教师提问:

1、什么是一元一次不等式?

2、什么是一元一次不等式的解集?

3、如何求一元一次不等式的解集?

针对性练习:

(设计意图:检验学生是否理解和掌握一元一次不等式的相关概念,为本节新课内容的学习做好铺垫。同时对解不等式中的相关要点加以强调:①解不等式中,系数化为1时不等号的方向是否要改变;②在数轴上表示解集时“实心圆点”和“空心圆圈”的选择;③要正确理解利用数轴表示出来的不等式解集的几何意义。)

活动2【讲授】创设问题情景,探索新知

1、问题(课本第127页):用每分钟可抽30 t水的抽水机来抽污水管道里积存的污水,估计积存的污水

超过1 200 t而不足1 500 t,那么将污水抽完所用时间的范围是什么?

(设计意图:结合生活实例,让学生经历通过具体问题抽象出不等式组的过程,即经历知识的拓展过程,让学生体会到数学学习的内容是现实的、有意义的、富有挑战性的。)

2、引导学生找出问题中“积存的污水”需同时满足的两个不等关系:

超过1 200 t和不足1 500 t。

3、问题1:如何用数学式子表示这两个不等关系?

1)引导学生一起把这个实际问题转换为数学模型:

满足一个不等关系我们可列一个不等式,满足两个不等关系可以列出两个不等式。

设用x min将污水抽完,则x需同时满足以下两个不等式:

30x>1200, ①

30x<1500 ②

2)教师归纳一元一次不等式组的意义:

由于未知数x需同时满足上述两个不等式,那么类似于方程组,我们把这样两个不等式合起来,就组成一个一元一次不等式组。

(设计意图:把实际问题转换为数学模型,同时让学生根据一元一次不等式和二元一次方程组的有关概念来类推一元一次不等式组的有关概念,渗透类比和化归思想。)

4、问题2:怎样确定不等式组中既满足不等式①同时又满足不等式②的x的可取值范围?

1)教师分析:对于一元一次不等式组来说,组成不等式组的每一个不等式中都只含有一个未知数,

运用前面解一元一次不等式的知识,我们就能直接求出不等式组中的每一个一元一次不等式的解集。

2)得到解不等式组的第一个步骤:分别直接求出这两个不等式的解集。学生自行求解:

由不等式①,解得x>40

由不等式②,解得x<50

3)教师引导学生根据题意,容易得到:在这两个解集中,由于未知数x既要满足x>40,也要同时满足x<50,因此x>40和x<50这两个解集的公共部分,就是不等式组中x可以取值的范围。

(设计意图:让学生在教师的引导下探究不等式组的解集及其解法,养成自主探究的良好学习习惯。)

5、问题3:如何求得这两个解集的公共部分?

学生活动:将不等式①和②的解集在同一条数轴上分别表示出来。

(设计意图:启发学生可利用数轴的直观性帮助我们寻找这两个不等式解集的公共部分。)

教师活动:利用多媒体课件,用三种不同形式表示这两个解集,帮助学生求得这个公共部分。

(设计意图:结合介绍利用数轴确定公共部分的三种不同形式,突破本节课的难点,培养学生的观察能力和数形结合的思想方法。)

形式一:用两种不同颜色表示这两个解集

1)通过设置以下几个问题,要求学生通过观察、分组讨论、取值验证,自主得出结论。

(1)这两种颜色把数轴分成几个部分?

(2)每一个部分分别表示哪些数?

(3) 请每一小组的同学从这几个部分中各取2~3个数,分别代入两个不等式中,同时思考:哪部分的数既满足不等式①同时又满足不等式②?

2)学生通过自主探究、合作交流,得到这3个问题的正确答案。

3)得出结论:

只有红色和蓝色重叠的部分才既满足不等式①又同时满足不等式②。因此,红色和蓝色重叠的部分就是我们要找的x的可取值范围。

4)教师提问:两个不等式解集的界点:即实数40、50所在的点是否落在红色和蓝色重叠的部分?教师引导学生利用学过的验证法进行验证,并得出结论:两个界点没有落在红色和蓝色重叠的部分。

(设计意图:让学生对一系列的问题进行自主分析和解答,充分调动学生学习的主动性和积极性。同时在上述过程中,利用不同颜色的直观性,目的在于能让学生更清楚地找出不等式①和不等式②解集的公共部分。)

形式二:利用画斜线的方式:用两种不同方向的斜线分别画出x>40和x<50这两个部分的解集。

类似地,引导学生得出结论:两个解集的公共部分,就是图中两种不同方向斜线重叠的部分,从而得出结论。

形式三:结合课本,利用两条横线都经过的部分来确定两个解集的公共部分。

(设计意图:介绍不同的形式,让学生再一次鲜明、直观地体会:x的可取值范围是两个不等式解集的公共部分;进一步培养学生的观察能力和数形结合的思想方法。)

6、问题4:如何表示这个可取值范围?

教师分析:在数轴上,未知数x落在实数40和50之间。而我们知道,数轴上的实数,它们从左到右的顺序,就是从小到大的顺序。因此,我们可将这三个数先按从小到大的顺序书写出来,再用小于号依次进行连接,记为4040且x<50。

7、小结并解决课本问题:原不等式组中x的取值范围为40

(设计意图:首尾呼应,完成了实际问题的研究,通过这个研究过程,让学生进行感悟、归纳、领会知识的真谛。)

8、同时,类比一元一次不等式解集的几何意义,教师再次进行归纳:

在数轴上,若在40

一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集。解不等式组就是求它的解集。

9、结合上述学习过程,让学生和教师一起归纳解一元一次不等式组的步骤:

(1)分别求出不等式组中各个不等式的解集;

(2)把这些解集分别在同一条数轴上表示出来;

(3)确定各个不等式解集的公共部分;

(4)写出不等式组的解集。

(设计意图:及时进行小结,使学生对所学知识更加的系统化。)

《初中数学教学设计大全.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式